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Self-similar behaviour for the equation of fast
nonlinear diffusion

By J. R. King

Department of Theoretical Mechanics, University of Nottingham,
Nottingham NG7 2RD, UK.

We consider the Cauchy problem for the equation u, = V- (4" Vu) in RY for the cases
N>2 with 2/N<n<1 and N=2 with n =1 for which the time-asymptotic
behaviour of finite mass solutions has not previously been established. For N > 2
with n = 2/N the behaviour as { -+ o0 is shown to take an unusual self-similar form.
For N > 2 with 2/N < n < 1 and N = 2 with n = 1 solutions extinguish in finite time.
In the former case we show that the behaviour close to the extinction time is given
by a similarity solution of the second kind and we derive a number of results for the
similarity exponent. For N = 2 with » = 1 the solution to the Cauchy problem is not
uniquely specified, and we characterize the possible types of solution and establish
their behaviour close to extinction. We also indicate how physical considerations can
lead to a unique selection from among the available solutions. The limit N o0 is also
analysed, illustrating how the various types of asymptotic behaviour arise from the
evolution over earlier times.

1. Introduction

This paper is concerned with the Cauchy problem for the N-dimensional eqﬁation of
‘fast’ nonlinear diffusion, namely

du/ot =V (u"Vu) (1.1)

with n > 0, N > 2. The equation (1.1) arises in a wide range of applications of which
we note the following.

1. n =1 is applicable to the spreading of microscopic droplets (Lopez et al. 1976;
de Gennes 1984). More general values of » have also been considered in this context
(see, for example, Starov 1983).

2. n =1 also arises in plasma applications (Lonngren & Hirose 1976; Berryman &
Holland 1982). Values in the range 0 < n < 1 are also of interest (see, for example,
Berryman & Holland 1978).

3. The range 0 < n < 1 occurs in models of the diffusion of impurities in silicon
(King 1988). For illustrative purposes we give here a derivation of a simplified form
of the relevant model. It is assumed that the impurity can exist in two states, namely
mobile individual atoms (concentration ¢) and immobile clusters (concentration c,),
each of the latter being made up of m atoms. The clustering reaction is then

mA=A,,,

where A denotes an impurity atom and A,, a cluster. The simplest model describing
these processes assumes that this reaction is in equilibrium, so that

Co = Kc™, (12)
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where K is a constant, and that the redistribution of the mobile atoms can be
described by a linear diffusion term with constant diffusivity D, so that

9(c+cc) = DV?. (1.3)
ot
Writing % = c+c¢, and using (1.2), it is clear that, under appropriate scalings, the
high concentration behaviour for which ¢, > ¢ can be described by (1.1) with

n=(m—1)/m. (1.4)

As time increases, however, the maximum concentration will decrease, so the
condition ¢, > ¢ eventually ceases to be valid. On sufficiently long timescales we have
¢, < ¢ and the problem becomes dominated by linear diffusion. The results of this
paper thus provide descriptions of the intermediate asymptotic behaviour of
solutions to (1.2) and (1.3).

In addition to its physical relevance, (1.1) has been the subject of a great deal of
mathematical analysis. Some indication of this is provided by the review article of
Aronson (1986) which, however, is largely concerned with the ‘slow’ diffusion case
(n < 0) rather than the ‘fast’ diffusion case (n > 0) to which the current paper is
devoted.

We are concerned here with the Cauchy problem in which (1.1) is subject to the
initial condition

at t=0, w=1Ix) for xeRY, (1.5)
where the total mass

M*:f I(x)dV
RN

is finite, and we now indicate some of the known results for (1.1) subject to (1.5)
which are of relevance here.

(@) For n < min(1,2/N), it is well known (see, for example, Friedman & Kamin
1980) that the large-time behaviour is given by the appropriate instantaneous source
similarity solution which satisfies

at t=0, u=M*(x) for xeRY,
and takes the form (Landau & Lifschitz 1959)

w = V@) g x| /1Ny (1.6)
where, for n > 0,

n 2 2 e
f<77)=<_2—(2——n—l\7)(a +7 )) : (1.7)
The constant a can be determined using conservation of mass, the relation

f u(x, t)ydV = M* (1.8)
RN

being valid for all ¢ in this parameter range.

The role of such similarity solutions in describing the large-time behaviour has
been known at least since the work of Zel’dovich & Barenblatt (1958). The time-
asymptotic behaviour for n > 2/N (so that the solution (1.6) and (1.7) is not
applicable) has not previously been determined, however, and this is the main goal
of the current paper.

Phil. Trans. R. Soc. Lond. A (1993)
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(b) For N =1 with 1 <n <2 it is known (Esteban et al. 1988) that the problem
(1.1) and (1.5) is not uniquely specified. The maximal solution conserves mass and its
large-time behaviour is again given by (1.6) and (1.7), but other solutions also exist
which lose mass to infinity.

(¢) For N> 2 with 2/N < n < 1 finite mass solutions do not conserve mass and
they vanish in finite time (Benilan & Crandall 1981).

(d) For N=1 with » > 2, N=2 with n>1 and N> 2 with n > 1 the Cauchy
problem for equation (1.1) has no finite mass solutions (Herrero 1989; Vazquez 1992),
and these parameter ranges are therefore not considered here.

For the remainder of this paper we shall largely restrict attention to the radially
symmetric version of (1.1) and (1.5), so we consider

ou_ 1 Q(rw—l u—na_“), (1.9)

ot N or or
subject to
at t=0, wu=Ir),

at r=0, rNlu"0u/or =0, (1.10)

as r—o0, u—>0,
and we write

M=foorN‘1I(r)dr, (1.11)
0

which is be taken to be finite. We also assume that I(r) = 0 holds for all 7.

In this paper we consider the following issues which have not previously been
settled.

(I) For N > 2 with n = 2/N solutions preserve mass, but their large-time behaviour
is evidently not given by (1.6). In §2 we determine the large-time behaviour, showing
that it is asymptotically self-similar and of an unusual form.

(II) For N > 2 with 2/N <n < 1 the asymptotic behaviour of solutions close to
their time of extinction (¢ =¢,) has not been established. In §4 we show that the
relevant behaviour is given by a similarity solution of the second kind. Thus the
exponent £ in the relevant similarity solution

u~ (L,—0)A2PInfr (8, — 1)) as t—>i

cannot be calculated from an integral constraint, the mass not being conserved, but
is determined by a nonlinear eigenvalue problem.

(ITT) For N =2 with n =1 it has been shown (Vazquez 1992) that finite mass
solutions which vanish in finite time exist, but little else is known. In §5 we show that
the problem (1.9) and (1.10) is again not uniquely specified for these parameter
values but that, in contrast to the case N =1 with 1 < n < 2, the maximal solution
loses mass and vanishes in finite time. We also determine the asymptotic behaviour
close to the time of extinction.

(IV) By considering the radially symmetric case (1.9) we may permit N to take
non-integer values (some motivation for this will be given later). In the range N > 0
the problem (1.9) and (1.10) is not uniquely specified when N < 2 with 1 <n <2/N
and when N = 2 with » =1 (the special cases N =1 and N = 2 have already been
noted). In §6 we indicate how, in the appropriate limit, the incorporation of a
physically motivated regularizing effect selects uniquely from among the available
solutions. Section 6 also contains some discussion of our results.

Phil. Trans. R. Soc. Lond. A (1993)
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Figure 1. Schematic of parameter ranges. (1) » < min (1,2/N), (2) 1<n<2/N, (3)2/N<n <1,
(4) » = 2/N with n > 2, (5) n = 1 with N =2, (6) n = max (1,2/N) with N # 2, n > 1 with N = 2.

Section 3 is rather different from the remainder of the paper since it addresses the
limit N—oco rather than the time-asymptotic behaviour. This limit is instructive
because it enables the evolution over all time to be evaluated for all relevant n and
thus indicates how the various different cases arise. This limit is that in which the
geometrical aspects of the problem are emphasized.

Finally, it turns out that the behaviour as r—oo plays an important role in
determining the nature of the solutions, and the relevant results for the possible far-
field behaviours are summarized in the Appendix.

The time-asymptotic results of this paper describe timescales on which the form of
the solution to (1.1) is independent of the details of the initial conditions. For models
such as (1.2) and (1.3), which are well approximated by (1.1) only over a certain
concentration range, these results describe the possible forms of the intermediate
asymptotic behaviour. Since such timescales are those on which the solution is most
sensitive to the value of n, such results are of potential practical use in determining
n from experimental observations. It is worth stressing that the qualitative
behaviour of solutions to (1.1) can depend strongly on the dimension IV as well as on
the exponent n.

The various parameter ranges noted abeve are shown in figure 1. The cases
discussed in this paper are (4) (§2), (3) (§4), (5) (§5) and (2) (§6).

In this paper we emphasize the important role played by similarity solutions in
each of the various cases. The term solution is used loosely here since these similarity
‘solutions’ often do not exactly satisfy (1.1), but they do provide self-similar
descriptions of the relevant asymptotic behaviour. In several cases this is of a very
unusual type, as illustrated by (2.33) and (5.33) in particular.

2. N> 2 with n = 2/N

In this section we discuss the equation

Qu ! 9 (TN‘lu"2/Na—u), (2.1

ot PNy or

As already mentioned, in this borderline case equation (1.1) admits finite mass
solutions which conserve mass. An important difference from the case n < 2/N lies in
the large-time behaviour, it being evident from (1.6) and (1.7) that the usual
similarity solution is not appropriate when n = 2/N.

Phil. Trans. R. Soc. Lond. A (1993)
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Self-similar behaviour for fast nonlinear diffusion 341

We start by noting the far-field behaviour. When the initial profile I(r) decays
much more rapidly than »~#" as r o0 then the far-field behaviour of (1.9) with
n < 2/N is described by a separable solution:

nr? -1/n
)
the similarity solution (1.7) evidently has this behaviour. Seeking a comparable
expression for (2.1) we assume

u~tN2F(r) as r—o0,
where F(r) satisfies

INPN-LR = %(rN_lF‘z/N%g—). (2.2)
It is readily seen that a possible balance in (2.2) as r—o0 is given for N > 2 by
F~(N=2)1r21nr)" N2, (2.3)
The total mass
M= joo Nl u(r, t) dr (2.4)
0

associated with such far-field behaviour is bounded; the corresponding flux

du lnr \“W-272
_N-1, -y N DT
N ly o N((N—Z)t) as r—>o0

decays only logarithmically for large ».

To determine the large-time behaviour of (2.1) it turns out to be necessary to
consider the behaviour as r 00 in more detail. This depends rather sensitively on the
form of the initial conditions. We concentrate on the case in which the initial data
has compact support with

Iry=0 for r=r,

and for definiteness we assume that
I(r)y ~ A(ry—7) as r—>ry
for positive constants 4 and b. As ¢t 0" the solution to (2.1) then satisfies
u~ I(r) r <ty (2.5)
w ~ th/2(N+b) ¢((l)) P VO+0(tN/2(N+b)), (26)

where @ = (r—7,)t V2% and ¢(w) satisfies

N dg) _ d ([ _yndé
2(N+b) (b¢“‘”a:;) - a:;(¢ " dw)’

as w—>—0, ¢~A(—w),

as w—>+o0, ¢—>0;

for t < 1 the dominant behaviour close to r = r, is thus one dimensional.
The solution to (2.7) satisfies

¢~ (@/2(N—1))M2 as w—>+ o,
Phil. Trans. R. Soc. Lond. A (1993)


http://rsta.royalsocietypublishing.org/

\
A
[\
N

A

a
//\

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

) N

A\
/

y 9

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

342 J. R. King

for any value of b, and the important consequence for our purposes is that for
r>r1,, t <1 we have

un~ ((r—ry)?/2N—1)§)~N2 for NPV < r—p <1, (2.8)

this being independent of the behaviour of I(r) close to r = r,. It follows that fort < 1
the behaviour is given by (2.5) and (2.6) together with

) . u~NEE@r) >, (2.9)
where F satisfies (2.2) with
+ ~ — )2 —_1\\-N/2
as r—>rg, F ~ ((r—ry)?/2(N—1)) ,} (2.10)
as r—> 4o, F->0;

the first of these conditions follows from (2.8). Analysing the behaviour of (2.2) in the
limit r o0 (for example by linearizing about (2.3)) it may be shown that

F—2/N —

N

(NC2)(lnr—2(N_2) lnlnr—x0+o(1)) as r—>00, (2.11)
where z, is a constant which may in principle be determined by solving (2.2) subject
to (2.10). Because (2.2) is invariant under the rescaling r—r r, F—>r N F | it is easily
shown that

2y =Inry+yy, (2.12)
where the constant y, is independent of 7.

Motivated by (2.11) we introduce the change of variables

N

u=1r"¢, x=Inr,

which turns out to provide a convenient formulation for the problem, and we then
obtain the convection—diffusion equation

dc 0 —3/N dc
TR (c (@ Nc)). (2.13)
Writing u(0, ) = U(h),
equation (2.13) is subject to
— ~ Nz
as x—>—o0, c~ Ut)eV?, } (2.14)
as x> +00, ¢~ (x/(N—2)¢) N2,

where U(¢) must be determined as part of solution, and where we have assumed that
(2.3) describes the far-field behaviour of «. It follows from (2.4) that

Jw c(x,t) de = M. (2.15)

—00

As already indicated, to determine the large-time behaviour completely we require
a more detailed description of the behaviour as x>+ co than that given in (2.14). It
follows from (2.11) that

Y~ (@— (N/2(N—2)) Ina—a,)/(N—=2)t for <1, w>+oo. (2.16)

The important feature of the expression (2.16) is that it in fact holds as x — + oo for
all t. To establish this we note that if we write

c—tV2Q(x) ~ O(x,t) as x—>+ 00,
where  G(z) = eN*F(e®) so that G(x) ~ (x/(N—2))M? as x—>+00,
Phil. Trans. R. Soc. Lond. A (1993)
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Figure 2. Schematic of behaviour of solution to (2.13) as t >+ 0.
(@) go, see (2.21). (b) h,, see (2.28).

then at leading order C is given from (2.13) by

a_Q-_i(ﬁ
oa  dx\t )

the general solution to which takes the form
C=t"1P(x/t), (2.17)

where P is an arbitrary function. Because (2.9) holds, we require that C' go to zero
more rapidly than t¥/2 as t— 0 for fixed > In 7, which implies that P(c") must decay
faster than o= ¥*?/2 a5 ¢ — + 00. It thus follows that for all ¢ we have

N = (x—(N/2(N—2)) Inz—x,+0(1))/(N—2)¢t as x—>+00. (2.18)

We now determine the large-time behaviour of (2.13) subject to (2.14), (2.15) and
(2.18). An asymptotic form consistent with these conditions is that

o~ NI g () + 2NN In b gy () + 47NN D go(n)  as t>400, (2.19)
where 5 = x/tN/® =Y _ Tt follows that g, is given by
N dg, d
2 %Yo) = N & (gr-un 2.2

the convection term being the only term on the right-hand side of (2.13) which
features at leading order. The required solution of (2.20) is

go(n) = (/(N—2))~2. (2.21)

The expression (2.21) is evidently not valid for all # and an inner region is needed;
this will be discussed shortly. The asymptotic structure is shown schematically in
figure 2. The representation (2.19) therefore gives an outer expansion valid for

x=0@NN-?) as t—>+o0 with a/tNVD >y,

where the constant 7, can be determined from (2.15); setting
f go(n) dy =M
Mo

Phil. Trans. R. Soc. Lond. A (1993)
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yields 7o = (N—2) (M/2)"2 N2, (2.22)
We shall also require the correction terms g, and g, in (2.19). We have
N dgi) _ o 4 o
m(%‘“ﬂa‘;) =—- 2)d17 90" 91)
and
N g5\ _ A ( w99\ _ y_oy (e
so that
g, = (n/(N—=2))" /24, (2.23)
go = (n/(N—=2)) W22 (4, + GV —2) 4, —§N*/(N—2)) In 7)), (2.24)

where 4, and 4, are constants of integration. For consistency with (2.18) we then
need
A, =N3/4(N—-2)}, A,=Nzx,/2(N—2),

and to this order the outer expansion (2.19) simply reproduces the far-field behaviour
given by (2.18).
To complete the analysis of (2.13) in the limit ¢t >+ 00 we must consider an interior

layer with scaling
2

x =y, tNND sInt+z,

N
2(N—2)
with z = O(1). The inner expansion then takes the form
e~ NN (2) 412V ND ] (2) as t—>+ 0 (2.25)
and the outer solutions provide matching conditions
by ~ (1,/(N—2))"N2 as 2>+ 00, (2.26)
hy ~—=N@o/(N—2)) N2 (z— (N/2(N—2)) In 5, —x,)/29, as z—>+ 0. (2.27)
In addition we require that

hg,hy >0 as z—>—o0.

N e A (e
N—277°—d_z__dz(h° dz Nho

7 -N/2
with solution ho(2) = ( o1 +e_2(z“z°))) , (2.28)

We then have

N-2

where z, is a constant of integration.
At next order we find that

N N dh, N dh, d

I =g @ ~az T W=D (R R,
so that
N Z 7 ’ 1\72 N _ d —2/N _2/N
N—2) J_w ho(#) ' =5 s o~ gl = g (™™ ) = (N =2) 5™ Iy,

Phil. Trans. R. Soc. Lond. A (1993)
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from which it is easily shown that
hy~—=Ny/(N=2)) N2 (z+1/(N—2)+Kky—2,)/29, as z—>+00, (2.29)
where
v = f (e H) d,
H (%) d]:noting the Heaviside step function. It therefore follows from (2.27) that z, is
given by

N 1
Zo—mln 770+W_—2)‘+KN+.%0. (230)

This result may also be obtained by using (2.15). We have thus established that
U(t) ~ a—N(%M)N/(N—2)+N2/(N—2)2t_N/(N—z)—Na/z(N—2)2 exp (_N% tN/(N—2)) as t—>+ o0,
where the constant a is given by
a = (N—2)N2N=2 exp (1/(N—2)+ &y +2,), (2.31)

so that U(t) decays exponentially quickly for large .
Returning to the original variables we therefore have at leading order as ¢ -+ oo

w o~ (M/zt)N/(N—z) (CIIZ(%]‘I)—ZN/(N—Z)2 tNZ/(N—Z)2 exp (2,)70 tN/(N—Z)) + 7-2)—N/2} (232)
for r=O(tV2N-2" exp (1,t"' ")),

with 7, given by (2.22). Expression (2.32) may be rewritten in the unusual self-similar
form

w ~ - NI(N=2)=N*/2(N-2)* exp (—Ny, tN/(N—z))f(r/th/z(N—z)2 exp (7, NIN=2)) - (2.33)
In addition, (2.21) yields

r2Inr \TV2 Inr
U~ <_(N—2)t) as t—>+4oo for A= > M- (2.34)

A number of comments about this analysis are appropriate.
1. By making the rescaling

t=>M2Nt, r—r, u—>Mu,

we may without loss of generality set M = 1. The manner in which M appears in
(2.22) and (2.32) is consistent with this.

2. It follows from (2.12) and (2.31) that the constant @ is proportional to r,, the
constant of proportionality depending only on N. We may without loss of generality
also take r, = 1 by setting y = 1/r, in the rescaling

t—>t, r—>r/y, u->yNu, (2.35)

which leaves both (2.1) and the total mass (2.4) unchanged ; in (2.32) ay then appears
in place of a. When n < 2/N only the total mass of the initial data, and not its spread,
appears in the large-time behaviour (1.6) and (1.7); by contrast, in the case n = 2/N
the large-time behaviour (2.32) depends on r, as well as on M.

Under (2.32) the initial condition transforms to

at t=0, w=yNIr/y); (2.36)
Phil. Trans. R. Soc. Lond. A (1993)
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if the solution to (2.1) subject to (1.10) is
w = u4(r,t)
then the solution subject to (2.36) is therefore
w="y"Na(r/y,t). (2.37)

In the limit in which y — 0 the initial condition (2.36) becomes « = Md(r)/rN~1, and
it is clear from (2.37) that no diffusion occurs in this limit. In terms of the formulation
represented by (2.13), the change of variables (2.35) translates the initial conditions
for ¢(x,t) further and further to the left as y decreases. For initial conditions for w in
which only part of the total mass is contained in a delta function, that part remains
immobile while the rest diffuses out.
We note that for general » the appropriate generalization of (2.35) which leaves
(1.9) and (1.11) unchanged is
i~y

nN—2t
’

r—>rly, w—>yNu; (2.38)

the existence of the instantaneous source similarity solution (1.6) for n < 2/N
corresponds to this invariance transformation.

3. While it does describe the appropriate large-time behaviour, the form (2.33)
does not correspond to an exact similarity reduction of (2.1). It is, however, closely
related to the group-invariant solution

u = e N f(r/eft),
where fn) = ((B/N) (@®+ %),

and where # and a are arbitrary constants.

4. Assuming that the solution to (1.1) and (1.5) with » = 2/N becomes radially
symmetric as t -+ 00, then the results of this section are also relevant to the case in
which I(x) is not radially symmetric.

5. As already noted, the form of the large-time behaviour depends on the nature
of the initial conditions, which we assumed in the foregoing analysis to have compact
support. To illustrate other possibilities we now consider the case in which

I(ry~Ar® as r—o0,

where 4 and b are positive constants with b > N (so that (1.11) is finite). The
behaviour as ¢ — 0% is now of the form

u~ I(r) for r=0(1),
w~ NURON) b) for y = O NRO-N),
where w = rtV/2®~N and ¢(w) satisfies
N dg\ _ 1 d( v ondd
206—N) <b¢+“’dw) = N dw(“’ )
as w—>0" ¢ ~Aw™?,
as w—>+ow ¢—>0.
It follows from (2.39) that

(2.39)

v O __ Ne-2) _ R
- (N—2><1“‘” SV—2)6—m) "1 xo+°<1>) as w—>+o00, (240)
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where x, is a constant which may be determined by solving (2.39); it follows by
rescaling that
To= (0—N)"In A +py ,,

where the constant uy , depends only on N and b.

The large-time expansion for x = O/~ again takes the form (2.19) and
(2.21)—(2.24) remain valid. Using (2.40) it follows that in this case 4, and 4, are given
by

N N? DNz,
A= 4(N—2)3+2(N—2)2(b—N)’ 4y = 2(N—2)
The inner rescaling for ¢ > 1 now takes the form
N? N
— o 2/(N-2)
x =1t +(2(N—2)2+(N—2)(b—N)) In t+z. (2.41)

The expansion (2.25) and the matching condition (2.26) and solution (2.28) remain
valid, but the condition (2.27) is now replaced by

NOb—-2
hl~_N(770/(N_2))_N/2<z_'2—(ﬁ“_—(_2‘)—(?):w51n770_1:0)/2770 as z->+00,

and it may then be shown that (2.30) becomes

N(b—2) (b—2)

Ry g R v

3N—2)(b—N) Ryt .

The final result is that the large-time behaviour takes the self-similar form
w ~ - N/IN=2)-N*/2(N-2)"~N*/(N-2)(b—N) exp (—Ny, tN/(N—z))fw)

for 9= 7./(tNZ/z(N—2)2+N/(N—2)(b—N) exp (170 tN/(N—z))) — 0(1),

in place of (2.33). In the limit b6 —+00 we recover (2.33), as might be expected.

Hence, while the dominant (exponential) part of the time dependence is
independent of b, the large-time behaviour does depend on b; this is again in contrast
to the case n < 2/N when the large-time behaviour (1.6) depends on the initial
conditions only through M.

3. The limit N -0

(@) Introduction

This section is concerned with the limit N—oo which, while unphysical in this
context, does provide valuable insight. We discuss the range 0 <n <1; the
borderline case n = 2/N has n < 1. For n > 2/N there is a non-zero flux of material
out to infinity, with

1—n 1/(1—n)
U~ (m J(t)) pmNRIA=M gy r>00, (3.1)

where J(t), which must be determined as part of the solution, is the flux to infinity
and is defined by

J(t) = lim(—rN‘lu‘”a—u).

70 ar
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For simplicity we shall in this section again discuss the case in which I(r) has

compact support, with
P PP I(r)y >0 for r<r,,

I(ry=0 for r>r,.

We shall need to consider the cases n = O(1) and n = O(1/N) separately. Equation
(1.9) is more conveniently written in the form

du_ 0 0w\, (N—1) _.%u
at_ar(”' a¢)+ o (3.2)

and it is clear from (3.2) that we should introduce a rescaled time variable
T =Nt

by n=0(1),0<n<1

For n = O(1) the asymptotic structure of the solution to (3.2) in the limit N o0
comprises three regions. There are two outer regions, » < s(r) (in which » = O(1)) and
r > (1) (with w exponentially small), and an interior layer r» = s(7)+O(1/N); the
location s(7) of the interior layer is determined in the course of the analysis. The most
significant feature of the solution is that it vanishes in finite time, and we define
T =T, to be the extinction time, so that

u=0 for 7>7,
We also introduce
Teo = lim 7.
" N>
Writing
w=uy(r,7)+0(l) as N—oo for r<s(7)

we then obtain the first-order equation

Quy 1 _ Qu,

i (5.3)
which yields wy = I((r2 4 2uy" 7)3). (3.4)
The function u,(r,7) determined from (3.4) is in general multivalued and at any
(r,7) the larger value of u, is required. The required solution to (3.3) thus contains
a shock, located at r = s(7), say, with u, given by (3.4) for » < s and with », = 0 for
r > s. The behaviour is illustrated schematically in figure 3. We assume that I(r) is
monotonically decreasing which ensures that only one shock occurs. The location s(7)
and structure of the shock may be determined by considering an interior layer with

r=s(r)+N1z,

u = Uy(2,7)+0(1) as N—o0,

ivin, _8'6_120—9 dhna_ﬁ’_(l +_1.d—na_ﬁ’_q
gving 2 o\ ) TsM

where $=ds/dr.

Imposing 4,0 as z—+ 00, we obtain

by = (exp ((1 —nn)s (2—20(1))>—(1 —n) 88'>_1/n, (3.5)

Phil. Trans. R. Soc. Lond. A (1993)
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u

sl(t) r

Figure 3. Asymptotic structure as N—oo for n = O(1). (a) I(r). (b) u,, see (3.4). (c) 4,, see (3.5).

where z,(7) can be determined only by matching at higher orders. Matching (3.5) with
(8.4) requires that ) s o 1on (2= 21— n) s, (3.6)

which determines s(7). The required initial condition on the ordinary differential
equation (3.6) is that s(0) = r,. We note that the expression (3.6) may alternatively
be derived by writing (3.3) as the conservation law

a a 1 1-n | —
a—(ruo)—é;(muo ) = 0,

which yields directly the shock condition

(1—n) s = —lim uy"(r, 7). (3.7)

r—>8
It is worth noting that this conservation law relates to the first moment, the result
d (® N—-2
— dr = ———u!~"(0,t
dtL rudr =3 " (0.9

holding exactly (the integral is finite by (3.1)), and not to the mass.
For r > s it follows from (3.5) that u is exponentially small in V. Writing

W= wl/(l—n)

. oy 1y 1, 1\oy
nfQ-n) 27 T ¥ — |
gives v 3 SN + " (1 N) ar’

and applying the WKBJ method by writing
In ¢ ~ —Nep(r, 1)

. g\ 1/(0g

Matching with (3.8) then gives
¢ =1In (r/s).

This is consistent with the far-field expression (3.1).

Phil. Trans. R. Soc. Lond. A (1993)
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The following points may be made about the preceding analysis.
1. It is valid only for 7 < 7, the leading-order extinction time 7., being given by

8(Tgo) = 0.

2. The ordinary differential equation (3.6) can in principle be solved exactly for
any given I(r). Introducing S = 1s* and @ = — 8, equation (3.6) may be rewritten as

S+ (1—n)1Q = 2Q), (3.9)
where 2 is defined by )
I(22(Q)) = 1—n) Q.

Differentiating (3.9) gives a linear equation for 7(¢):

nQdr/dQ—(1—n)1 = —Q'(Q).

Q(Qo) = 373

Defining @, by

we therefore have

Q(l—n)/n Q
T="—0 J Q' (w) 0™ V" dw (3.10)
and by (3.9) 0
8= Q(Q)—Q_—"nlﬂnf Q' (0) 0" do. (3.11)
Q

Equations (3.10) and (3.11) give the solution S(7) in terms of the parameter Q.
Defining @, = Q(7,), Q. is given by the algebraic equation

Qe
nQ(Q,) Q1" = (1 ——n)J Q' (w)w " dw
Qo
and 7,, may then be calculated from
Teo = 2(Qc)/(1—7) Q.
3. The behaviour close to 7 = 7,, may be established as follows. Because

S~—Q, as T->7g

we have S(T) ~ (2Qu(Toe—T))F as T->75, (3.12)
and, using (3.7), we find that
Uy~ (1—=n) Q) V" as 7715 for r<s(7). (3.13)

(¢) n=0(1/N), n>0
On writing = v~/"_ it follows from (3.2) that
v o 1 (©v>2 N—1) ow
+ Vv

§=Ugﬁ_% or r or’

(3.14)

In the limit n—0 with N = O(1) a possible balance in (3.14) is given by

o 1 (o0
ot n\or/’

Phil. Trans. R. Soc. Lond. A (1993)
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Self-similar behaviour for fast nonlinear diffusion 351

which holds of ¢ = O(n). This corresponds to the formulation given by Kath & Cohen
(1982) for n—+0, N=1. When N is large and » is small with N = O(1) a more
complicated balance can occur in (3.14), namely

v 1 (> 1 w
5;"’—'77\7(6;) +;’l)é;, (315)

and this corresponds to the case of interest here.
We consider the limit in which I(r) is fixed as »—0, and we introduce

K = 1/nN.

The asymptotic structure in the limit N—oo with K = O(1) also contains three
regions. There are again two outer regions, r < s(7) (with u = O(1)) and r > s(7)
(where v = O(1) with v < 1, so that u is exponentially small), and an interior layer
r = s(7)+O0(1/N#).

For r < s(7) it follows from (3.2) that at leading order we have

Ou, _ 10u,
o ror’ (3.16)
so that uy = I((r2 4 27)3). (3.17)

No shock occurs in this case. The characteristics of (3.16) occupy the region
r? < ri—2r,

and the location of the interior layer is given by

s(r) = (r2—27)t for T<kl (3.18)
The behaviour in the interior layer depends on how I(r) behaves close to r = r, and
we again assume that

I(r) ~ A(ry—r)" as r—rg.
The interior layer scalings are now

r=s(r)+N7z, uw=N"24;

we note that these inner scalings are different from those of §35. At leading order for
T < 32 we then have
Oh, 0%, =z 0,

or 02 oz’

as z—>—00, d,~A(—sz/ry)?,

as z—>+o00, 4,0,
at 7=0, d,=A(—z H(—=?),
where we have matched with (3.17). In terms of the variables
Z=sz[ry, T=1—1%r}
we have 0ty /0T = 0%,/ 0Z*
as Z—>—o0, d,~A(—2),
as Z—+o, d,—~>0,
at T=0, Gy =A(—Z)YH(—Z).
Phil. Trans. R. Soc. Lond. A (1993)
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The solution to (3.19) takes the self-similar form
iy = TV W(Z]TY;
more importantly, it follows from (3.19) that
Indiy ~ (r2—27)22/4(ri—7)7 as z—>+ 0, (3.20)

so that i, becomes exponentially small as z—+ 0.
For r > s(1) we have

v, 1 v, v\

Do = 2, Lo g (Lo, 3.21

o o (67‘) (8.21)
To solve (3.21) we introduce y = * to give

v, v, 0, )2

0=y —0_oKy(-2 3.22

or ) ay y(@y) s ( )

and Charpit’s equations for the characteristics of this first-order partial differential
equation can be written in the form

dy _ dv, . dpy _ . .
dr 4Kyp,— vy, dar 2Kypg, dr (2K —1) pg, (3.23)
where
Do = ,/y.

The required initial conditions on (3.23) are
at 7=0, y=y, v,=1, p,=2~F,

where y, = &2; the characteristics all emerge from the point 7 =0, y = y, and are
parametrized by F, with 0 < P, <00. The resulting solution is easily derived in the
form
po=FH/(1+2K—-1)F ),
with
K#3 y=@ot2KRy,—1)7) (1+2K—1) Br)K/eED )

vy = (14 (2KP,y,— 1) P,7) (1 + (2K — 1) P, 7)Y/2K-D

(3.24)

K=} y=@+Byp—1)ne™, | (3.25)
UO=(1+(PO?/0_1)POT)6POT’J

The solution v,(y, 7) is given by eliminating F, from (3.24) or (3.25).
The characteristic projections of (3.22) take particularly simple forms for three
particular values of P,, as follows.

(i) B =0
It then follows from (3.24) that
Y=Y—T, (3.26)

with v, = 1 on this characteristic projection. The characteristic projection of (3.16)
with y = Y at 7 = 0 takes the form

y=Y—r, (3.27)
Phil. Trans. R. Soc. Lond. A (1993)
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@ e
Yl (2K~ == m mm mmm e o
%
yg y= % r? Yo y= % r2

Figure 4. Characteristic projections of (3.16) and (3.21). (a) » < 2/N. (b) »n > 2/N.

with 0 <Y < y,. For Y = y, this coincides with (3.26) and corresponds to r = s(7);
this is the location of the interior layer discussed above which describes the transition
between (3.17) and (3.24). It is easily shown that (3.24) matches with (3.20).

(ii) P, = 1/2Ky,.
In this case (3.24) gives
Y = yo(1+ (2K —1)7/2Ky,) /LD, (3.28)

(iii) £y = 1/y,.
Then
Y = Yoll + (2K — 1) 7/31g) $K- /K, (3.29)

At 7 =y, the region in which (3.17) holds disappears but the solutions (3.24) and
(3.25) remain valid; it follows that to this order the details of the initial conditions
are lost at 7 = y,,.

The solution (3.24) provides a simple means of exemplifying both the range n <
2/N (K > 1), in which mass is preserved for all time, and the range n > 2/N (K < })
when solutions extinguish in finite time. The special case K =} corresponds to the
borderline case n = 2/N considered in §2. We now discuss these three cases in turn.

(I) K >1 It follows from (3.24) that if P, < 1/2Ky, then the characteristic
projection reaches y = 0 at 7 = y,/(1 —2KP, y,). If P, > 1/2Ky, then we have

y ~ (2KP,y,— 1) (2K — 1) P,)2K/QE=) f@E-D/CK-D a3 754 o0,

The form of the characteristic projections is shown schematically in figure 4a. To
determine the behaviour of v, as 7>+ 00 we must consider the characteristics with
P,—1/2Ky, = O(1/7); (3.28) gives one of these. Using (3.24) we may then show that

LK1 K K —2/(2K—-1) 72
-1
ot (((2}{— 1) ’"°> Ter—) TzK/@K—D)

as 7—>+o00 for r=O(rK/CED) (3.30)

This is equivalent to the instantaneous source solution (1.6) and (1.7). We note that
the assumption that I(r) = O(1) for r < r, implies that MY ~ ry; we can, however,
set M = O(1) by adopting suitable rescalings.

Phil. Trans. R. Soc. Lond. A (1993)
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(II) K < 3. It now follows from (3.24) that if Py < 1/y, then the characteristic
reaches y = 0 at 7 = y,/(1 —2KPF, y,); if F, > 1/y, we have y 00 as 7—>1/(1 —2K) F,.
We thus have leading-order extinction time 7., = y,/(1—2K), the characteristics
having all left the domain 0 < y <o by 7 = 7,,. A schematic of the characteristic
projections for this case is given in figure 4b; this should be contrasted with figure
4a.

To determine the behaviour close to 7 = 7,, we require characteristics on which
P,—1/y, = O(1—1,,); the characteristic (3.29) is the one which provides the dividing
line between those going to y= 0 and those on which y—00. Defining ¢ by

By = 1+ (1 =2K) (1—=7¢0) ¥/40)/ Yo,
we find that as 7— 7,
Yy ~ (1=2K—2K3)) (1= 2K) (1+4) /) K/ KD (7, — 1) #H-D/EED,
vo ~ (L=2K+ (1—4K) ) (1= 2K) (1 +9) /yo)VEED (19— 1)K KD [y,

which gives the solution parametrized by ¢ ; v, may therefore be expressed in the self-
similar form

Vo ~ (Too—7) AT f(r ) (1 —7)ATHOICATON ag 71, (3.31)

In each of the cases (3.30) and (3.31) the asymptotic form is therefore self-similar, but
the corresponding solutions are very different in nature.

(IIT) K = 1. The solution is now given by (3.25) and the behaviour as 7+ oo is
largely determined by the characteristics on which Py—1/y,=—1/7+0(1/7%); we
thus obtain

rd 21 72 a1 .
Vo ~ 5 €XP F_l +;§ as 7—>+00 for r=0("texp (1/r3). (3.32)
0 0

In addition, for Fy = O(1) with P, > 1/y, we have
vo~rilnr/t as 7—>+4+00 for Inr/7>1/r2 (3.33)

Expressions (3.32) and (3.33) should be compared with (2.32) and (2.34)
respectively ; because MY ~ r, we have 9, ~ N/r2 as N—c0. The exponential part of
the 7 dependence in (3.32) is consistent with (2.32) but the power of 7 appearing
outside the exponential is different. This is because the limits N—~o0 and ¢ —>o0 (just)
fail to commute.

The following comments concern limiting cases of this analysis.

1. The limit Koo corresponds to the linear diffusion case n = 0. The exact
solution to (1.9) and (1.10) for » = 0 may be written in the form

R S WA CAY e (3.34)
0

where v = (N—2)/2 and I, is the modified Bessel function. Applying standard
asymptotic methods for integrals to (3.34) in the limit N—oco produces results
consistent with those given earlier.

2. The results of §3b in the limit n — 0" are consistent with those of §3¢ in the limit
K —0*. For example, in the limit »— 0" the expression (3.4) reproduces (3.17) and
(3.6) yields (3.18). Writing v, = exp (¢/K) in (3.21) and then taking the limit K — 0"
with ¢ > 0 reproduces (3.8). The characteristic projections of (3.8) are lines on which

Phil. Trans. R. Soc. Lond. A (1993)
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7 is constant; it follows from (3.24) that in the limit K—0% the characteristic
projections of (3.21) are given for P, > 1/y, by

y~y,—7 with 0<7<1/F,
and T~1/P, with y,—1/F <y <.

3. We have shown that for 1 >n > 2/N the limiting behaviour close to the
extinction time is self-similar for N—-oo (see (3.12), (3.13) and (3.31)). This form of
behaviour will be the starting point of the analysis for N = O(1) given in the next
section.

4. N>2with2/N<n<1
(@) Introduction

In this section we discuss equation (1.9) subject to (1.10) and (1.11) for N > 2 with
2/N < n < 1. As already illustrated for the case N > 1, in this parameter range the
solution extinguishes at some finite time, and we consider for the most part the
behaviour close to the time of extinction. Since the solution to (1.1) and (1.5) is
expected to become radially symmetric as the extinction time is approached, the
analysis of this section is more generally applicable.

The behaviour as r—>o0 takes the form (3.1), which in this parameter range is
consistent with the requirement of finite total mass; J(f) gives the flux of material to
infinity, which must be determined as part of the solution. The total mass then
satisfies

00 t
J N u(r, ) dr =M—j J(t)de,
0

0

and extinction occurs at ¢ = t,, where

f%mw=M

The behaviour as ¢t is self-similar with

un~ (b=t f(r/(t.—t)F) as t—>tg, (4.1)
where a is given in terms of § by
a=(1-208)/n. (4.2)
The value of § is determined from the problem
W\ _ oAl df)
—Naf—pn-L)| = — e 4.

df
— N-1p-n_"J _
at =0 pNTLf dn 0, (4.4)

as 77—+ o0 f= 0(77—(N—2)/(1-n))’

in which g plays the role of an eigenvalue. Because it is an eigenvalue problem, the
solution to (4.3) and (4.4) contains an arbitrary constant; if f = f(7) is a solution then
so is f = y~%" f(y/y) for any constant y. We shall specify f uniquely by requiring that

at 9=0, f=1, (4.5)
Phil. Trans. R. Soc. Lond. A (1993)
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in addition to (4.4). The problem may then be easily investigated numerically for
particular parameter values since it may be solved as an initial-value problem from
7 =0, and the value of § giving the required far-field behaviour can then be
determined iteratively. Here we instead adopt approaches which provide analytical
expressions for f and £ in various special or limiting cases.

The equation (4.3) can be reformulated by writing

f = (th)_l/n> g = 11’1 UE (46)
to give
e Gy = =t (G + (w22 a2 (-2 (+.7)

which is amenable to phase plane methods. The formulation (4.7) will be useful in
what follows.

We now consider a number of asymptotic limits together with a special case in
which the solution to (4.3)—(4.5) may be determined exactly.

(b) m—(2/N)*

We write
n=2/N+e;
it turns out that a, f = O(¢™!) as e 0, and we anticipate this by writing
4 = ea, /? =—ef
with né—2f = e.

In the limit ¢~ 0, (4.3)—(4.5) is a singular perturbation problem with inner region
n = O(e?) and outer region £ = O(e¢'), & being given by (4.6).
Writing # = €24, the leading-order inner problem is

=+ %) = ()

and imposing (4.5) gives

fo = (L (Bo/N) ) 2. (4.8)
An appropriate formulation for the outer problem is given by (4.7) with
E=Efe, h=h/e

so that at leading order

ho— fy dhy /A€ = — (N—2) hy diry/dE+N? 2. (4.9)
The matching condition on (4.9) which follows from (4.8) is
at £=0, hy=p,/N. (4.10)

Equation (4.9) can be rewritten as
dhy o+ (N2hy—1)
—_—F = ho—-‘———z—‘ﬂ—,
d¢ (N—=2) hy— o)

and, in order for the solution which satisfies (4.10) to have the required far-field
behaviour, it follows that )
Bo= (N—2)/N?,

Phil. Trans. R. Soc. Lond. A (1993)
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Self-similar behaviour for fast nonlinear diffusion 357
. (N-2) N2
so that hy = w3 eXP N_Qg .

We have therefore established that

N—2 (N—2)

N —— N ot e e —_— +
A~ g NoN—2) as nN—2->0%,

so that the decay of u is very slow close to the extinction time.

(¢) n—>1"

We note that in terms of the model (1.2)—(1.4) this limit has a specific physical
interpretation, namely that the clusters are very large. A value m = 12 has been
proposed for the diffusion of boron in silicon by Ryssel et al. (1980).

In this limit we have a € 1, and we write

n=1—¢,
a=4, f=31-(1—€)d),

with € € 1 and where d(¢) € 1 remains to be determined.
In (4.3) we write f = 14 6F for y = O(1), so that at leading order
dF, 1 d ( N1 dFo)

— 1,0 —
Iy T

dy.
giving
" 1.2 ﬂ/ 1. 42
FO = —J n’l_N et J 77”N—1 e 1! dn” d’)]’,
0 0
it follows that

Fy~—=2kyy Ve as 5>+, (4.11)
where ky=2"1T@EN).
It is evident from (4.11) that F, is of O(1/6) in an asymptotically narrow region
7 = 15(8) In (1/8) +z/Int (1/4), (4.12)
where 7,(8) is defined by
S —1 = 2k n5N In~N/2(1/6), (4.13)
so that N ~2 as §->0. (4.14)

We thus have a transition layer with z = O(1) in which we write
f~foz) as 60,
and the leading-order matching condition
Jo~1—€ as z—>—0o0 (4.15)
then follows from (4.11) and (4.13). Using (4.12) and (4.14) we obtain

fo=1/(1+¢%). (4.16)

so imposing (4.15) gives

Phil. Trans. R. Soc. Lond. A (1993)
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358 J. R. King
The final region we have to discuss is 7 = O(In¥(1/8)) with #/In¥(1/6) > 2. We write
7 =Ink(1/0)y, g=—Inf/In (1/5),
to give at leading order
d dg
N-1 _ 0
d?ff(ﬂ exp (—eln(1/d)g,) dn) 0, (4.17)

with matching condition
go~nt—2 as gf—>2% (4.18)

which follows from (4.16). Equation (4.17) implies that ¢ = O(1/In (1/4)). The far-
field condition requires that g,—+ o0 as " —+ 00, so that

o= ETJX—(_l—z/g) In (7/4),
where 4 is a constant. Matching with (4.18) then yields
A=2, eln(1/8) =3N—-2),
so that =21n iy )

Hence as n— 1~
In(1/a) ~ 2)/2(1—n)

so that a is exponentially small, and the approach to extinction is very rapid.

(d) n=4/(N+2)

This is a case in which exact results can be derived. In King (1992d) exact solutions

to
ow_ 1 0f ny —a/(N+2) YU Ou
ot rN 1o (7 ” or
of the form
w = (ag(t) + @y (1) 1+ ay(t) rt) VBN (4.19)
were constructed. These solutions have finite mass and extinguish in finite time with
un~ (L,—t)NDASf(r) as t>1. (4.20)

We infer that (4.20) describes the asymptotic form of solutions for arbitrary initial
conditions. Taking a = }{(N+2), # = 0, the required solution to (4.3)—(4.5) then takes
the form

1 (N+2)/4
s =ttt gr)

This special case is of particular interest because it provides the dividing line
between the case
<0 n<4/(N+2),

in which the solution (4.1) spreads out to infinity as ¢t —¢; and the case
>0 n>4/N+2),
in which the range of (4.1) contracts to zero as t—{;.

Phil. Trans. R. Soc. Lond. A (1993)
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Self-simalar behaviour for fast nonlinear diffusion 359

(€) Other results

We believe on the basis of a phase plane analysis of (4.7) that, for each n and N,
(4.3) and (4.4) admits a non-trivial solution for exactly one value of £, which we
denote here as §*(n,N). In this section we note some results which are relevant to
such an analysis, without going into all of the details.

If we define

p = dh/dg,
then the required solution to (4.7) must satisfy

p~n1N__n2h with A—>+400 as £->+o00, (4.21)

p~—2h with hA->+00 as §->—o0. (4.22)

For each value of f, there is only one trajectory with the behaviour (4.21) and one
with the behaviour (4.22). Only for § = * does the same trajectory satisfy both
(4.21) and (4.22).

We now note four exact solutions of (4.3) for particular values of f which
correspond to straight line trajectories in the phase plane; in each case 4 is an
arbitrary constant.

. 1 A n,'72 1/n
() =—a:@f—(+aai5) : p=—2ht s (4.23)
1— niN—2

- ~(N-n/-n) . -

(i) g N 2 f=A4y = h. (4.24)
Qi) =1, f=A; p=—2h (4.25)
. 1 ny?  \TU" niN—2 n

- _ n(N-2)/Q-n) o M~ o= _
W) b=s0=my / (A” +2(nN—2)) I el Ty
(4.26)

Because these trajectories each satisfy either (4.21) or (4.22), they can be used in
conjunction with the phase plane analysis to obtain bounds on £*; in particular we
have

—(l—n)/(nN—2) < p* < 1.

The formulation (4.7) also leads to the following observation, which corresponds to
a special case of the transformations discussed in King (1992a). If we introduce the
change of variables

=W, £=pL, (4.27)
with 4 = —2(1—n)/(nN—2), then we obtain
gl A (g e e sy
where
N =2(N—4+2n)/(nRN—2), pf =—(nN—-2)p/2(1—mn). (4.29)

Phil. Trans. R. Soc. Lond. A (1993)
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The equation (4.28) is of the same form as (4.7), and it is then readily seen that g*
satisfies
L, 2(N—4+42n)/(nN—2)) = — (nN—2) f*(n,N)/2(1 —n). (4.30)

The transformation (4.27) maps the cases 4/(N+2)<n<1 and 2/N<n<
4/(N+2) into one another. For n = 4/(N+2) we have N = N’ and the result f* =0
for n = 4/(N+2) then follows immediately from (4.30).

(f) Discussion

A number of remarks may be made about the results of this section.

1. The exponent f in (4.1) is determined from the nonlinear eigenvalue problem
(4.3). The similarity solution (4.1) is thus one of the second kind in the sense of
Barenblatt (1979). Similarity solutions of the second kind have also recently
occurred in certain other nonlinear diffusion problems (see, for example, Aronson
et al. 1992; Bernis et al. 1992).

2. The limit N—o0 in (4.3) can also be considered and the results obtained are
consistent with those of §3. Specifically we may show that, for 2/N < n < 1, we have

2 niN—4
(Z’Vm, ﬂ'\‘m as N-—oo for nN—O(l)
and
In (1/a) ~IN(n/(1—n)+1In (1—n)) as N-oo for == O0(1).

In the latter case a is again exponentially small; this result is a refinement of those
of §3b close to the extinction time.
3. If uw = @(r,t) is the solution for the initial condition

at t=0, w=I(r),

and the corresponding extinction time is ¢ = ¢,, then using the rescaling (2.38) the
solution for the initial condition

at t=0, u=yNIr/y), (4.31)
is given by u ="y Nur/y,y"N2t)
and the extinction time becomes
t =y NDy
In the limit in which y — 0 in (4.31) we obtain delta function initial conditions; in this
limit the extinction time becomes infinite and no diffusion occurs. The issue of delta

function initial conditions is addressed rigorously in Brezis & Friedman (1983).
4. Our results indicate that

w~ Yy (= )OO fr [y (t— 1Y) as to g, (4.32)

where f and f are determined uniquely by (4.3)—(4.5). The agymptotic behaviour
(4.32) depends on the initial conditions only through the constants y and ¢,, which
cannot be determined from an analysis of the limit ¢ —t;. The dependence of ¢, and
¥ on the initial conditions is an interesting open question. In general these quantities
can presumably only be determined numerically, but the following asymptotic
results can be obtained by determining the evolution over earlier times:

n—2/N=¢, t,~eNNT Iny~©N®N—2)In((N—2)T,/N)/N?e¢ as e—0",
Phil. Trans. R. Soc. Lond. A (1993)
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Self-similar behaviour for fast nonlinear diffusion 361

where 7T, = N"2N=2/N(LJ[)2/N (the analysis of this case relies on that of §2);

n=1—e¢, tc~efwﬂ(r)dr/(N——2), y~ (I(0)F as e->0".

0

5. Self-similar behaviour for (1.1) close to the extinction time has also been
discussed by Galaktionov & Posashkov (1986), but there are a number of important
differences from the results given here. Galaktionov & Posashkov (1986) consider
only similarity solutions of infinite mass, mainly those which behave as

u ~ (nr?/2(mN—2) (t*—))"Y" as r-—>o0, (4.33)
where t* is a constant. They show that similarity solutions of the form
w = (t*—t) AP f(r [ (1% —1)F) (4.34)
satisfying (4.33) exist for # < —1/(nN—2) (in fact it follows from the phase plane
analysis that such solutions exist for
£ < min (£, %),

where B, = (nN+2n—4)/2(nN—2) is the value of § at which the relevant critical
point changes stability).
Such solutions require that the initial conditions behave as

I~ Ar?" as r—>o0 (4.35)
and it follows from (4.33) that
t* = ndA"/(nN—2). (4.36)

For initial conditions of the form (4.35), the extinction time ¢, may be given by ¢, =
t* (as illustrated by solutions of the form (4.34) which vanish at ¢ = ¢*) or may satisfy
t, > t*. In the latter case, at t = ¢* the far-field behaviour changes from (4.33) to the
finite mass form (3.1) with J(t) >+ oo as ¢ ¢**. This behaviour may be illustrated
by similarity solutions of the form

w = (PR — gD flp(pk— )V MDY < g

u=Cr, t=t¥, (4.37)

w = (t_t*)7/<n7*2) g(r(t—t*)l/(’”_z)) > t*,
which can describe the far-field behaviour of more general solutions for ¢ close to ¢*.
In (4.37), C and 7y are positive constants with

N=2)/(1—=n)>vy>2/n

and f and ¢ satisfy

fn),g9(n) ~ Cy™ as 70",
f(n) ~ (ny?/2(nN—2))"" as y->+ 0,
g(n) ~ Dy~ N=2/0=m as 7>+,

for some constant D. The existence of such similarity solutions may again be
established via the phase plane.

For initial conditions which satisfy (4.35), various types of behaviour close to
t = t* are therefore possible. Which actually occurs is expected to be determined by
the precise behaviour of the initial conditions for large ». When ¢, = t* and (4.34)

Phil. Trans. B. Soc. Lond. A (1993)


http://rsta.royalsocietypublishing.org/

a
\
\
8 \
i

//\

A

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A
A \
)

[

y 9

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org
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describes the behaviour close to extinction, the similarity exponent depends on the
initial conditions and the extinction time can be directly determined from the initial
conditions by (4.36). By contrast, in the finite mass case discussed earlier (and for
many infinite mass initial conditions decaying more rapidly than (4.35) as r —o0) the
similarity exponent is independent of the initial conditions, being determined from
(4.3) and (4.4), but the extinction time cannot in general be calculated exactly.

In summary, the similarity solutions of the form (4.34) discussed by Galaktionov
& Posashkov (1986) are applicable only to certain infinite mass initial conditions.
The important role played by similarity solutions of the second kind was not noted
by these authors.

5. n=1,N=2

The two-dimensional case in which » = 1 is remarkable in a number of respects.
The equation we are considering is

du_10( _ ou
Et__m(m 5) (5.1)

for which several applications are known. We note in particular the work of de Gennes
(1984) on the spreading of microscopic droplets. It is suggested in de Gennes (1984)
that the similarity solution

w= e f(r/e®), (5.2)

with Jg) = 2/a(a®+7?)

and where o and a are constants, may be of physical relevance even though it
corresponds to infinite total mass. We shall indicate that it is not in fact relevant to
the solution to (5.1) subject to (1.10) with finite mass M.

We start by noting possible far-field balances for (5.1) since, as in §2, such
behaviour is crucial in determining asymptotic forms of solution. There are two
possibilities.

(@) Quasi-steady balance
u~A@t)r7® as r—oo with J> 2. (6.3)

The functions 4 and J are arbitrary, subject to J > 2; higher-order terms can easily
be constructed, giving

U~ Ar“’(l ————A—J——r‘("‘” Inr+ ! (A —(if!;)) r“J“z’) as r—>00,

(J—2) (J—2)?
where * denotes d/dt. For this form of solution the flux satisfies

—ru 1 0u/0r>J(t) as r—o0

so that f ru dr =M—f J(t)dt. (5.4)
0

0

(b) Separable balance
u~2t/r*In*r as r—o0. (5.5)
As in §2, we may seek an asymptotic form
u~tl(r) as r—o0. (5.6)
Phil. Trans. R. Soc. Lond. A (1993)
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Self-simalar behaviour for fast nonlinear diffusion 363

The general solution to (5.1) of the form (5.6) may be written
F(r) =2y /r* (1= (r/ry)7)?,

where 7, and y are arbitrary constants; the behaviour of this solution in the limit
r->00 is a special case of (5.3). However, corresponding to the limit y - 0 we also have
a singular solution

F(ry=2/r*1n? (r/r,), (6.7)

which produces the required asymptotic behaviour (5.5).
It follows from (5.5) that

—rutou/or—>2 as r-—>o0, (5.8)
so that J rudr =M—2t. (6.9)
0

By comparison with (5.4) we note that this represents the minimum rate of loss of
material to infinity (because J > 2). It is evident that expressions (5.4) and (5.9) both
imply finite-time extinction with w = 0 for ¢ > {,. In the case of (5.9) we have

te =3M.
The situation may be further clarified by introducing the change of variables

—2

u=7r"2c, xz=Inr,

to give, as in King (1992a), the one-dimensional equation
dc 0 ( _,0c

c~Ult)e*® as x—>— 00, (5.11)

Conditions on (5.10) are that

where U(t) = u(0,¢) must be determined as part of the solution, and
c~A(t)emVODT a9 x>+ 00, (5.12)

when (5.2) holds, while
c~2t/x* as x>+ o0 (5.13)

corresponds to (5.5). The one-dimensional problems (5.10) and (5.11) with (5.12) or
(5.13) are of the type discussed in Rodriguez & Vazquez (1990) and the required
solution to (5.10) is non-maximal in the sense discussed there. It follows from the
results of Rodriguez & Vazquez (1990) that, in order for the solution to (5.10)—(5.12)
with suitable initial conditions to be specified uniquely, J(t) must be prescribed; A(t)
is then determined as part of the solution. Because J(¢) must be specified beforehand,
it is possible to explicitly calculate the extinction time from (5.4); we have

ch(t) dr = M.

The case n = 1, N = 2 therefore shares the property of the cases 1 <n <2, N=1
that the solution to (1.9) and (1.10) is not uniquely specified unless the flux to infinity

Phil. Trans. R. Soc. Lond. A (1993)
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is also prescribed. An important difference, however, is that for 1 <n < 2, N =1 the
maximal solution preserves mass whereas for n = 1, N = 2 it does not, the minimum
flux to infinity being given by (5.8).

As we shall indicate later, the most important solution physically is likely to be
that in which (5.5) holds. However, before discussing this case we make some brief
comments concerning solutions for which (5.3) holds.

1. Equation (5.10) admits similarity solution of the form

¢ = (te—=t)g(x+pIn (t.—1)), (5.14)
where y is an arbitrary constant and g({) satisfies

Writing ¢ = e” and integrating gives
uw#0 2u—In (14+2u)—pu?e" = pdh/d¢—In (14 pxdh/dg),
u=0 2—e"=LYdr/d¢)? }

where we have imposed the condition (5.11). It follows from (5.15) that as {—+ o0
we have

(5.15)

h ~ v,
where v is the positive root of
2u—In (142u) = —pur—In (1 —puv). (5.16)
The solution (5.14) describes the behaviour at ¢ —¢; with
v=J(t,)—2, (5.17)

(see (5.12)) and u can then be determined from (5.16). In particular we have
v> 400, p~ —i+ir+2)e it
v=2  u=0, (5.18)
y—>07F, W~ 4/v%

It is evident that the behaviour is singular in the limit ¥ — 0 which corresponds to

(6.13); the case (5.13) must therefore be discussed separately.
In the original variables the solution (5.14) takes the self-similar form

u = (le— )" f(r(t.—t)").

We note that the behaviour close to extinction is therefore again given by a
similarity solution of the second kind; in this case the eigenvalue x can be obtained
exactly from (5.16) with v given by (5.17).
2. Solutions of the form (4.18) exist whenever n =4/(N+2), so (5.1) admits
solutions with
w = 1/(a,(t)+a,(t) r2+ ay(t) r*).
Such solutions have
—ru Ou/0r—>4 as 7>

and their behaviour close to extinction takes the form

U = (tc —t)f(r)’

Phil. Trans. R. Soc. Lond. A (1993)
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Self-similar behaviour for fast nonlinear diffusion 365

in agreement with (5.18). The results of §4 indicate that the values n =1, n = 2/N
and n=4/(N+2) are all special cases and it is worth noting that these three
conditions are simultaneously satisfied when n =1, N = 2.

We now turn to the case of the ‘maximal’ solution in which (5.10) is to be solved
subject to (5.11) and (5.13) with

f cda =M—2t. (5.19)

—00

We again require a more detailed description of the behaviour as -+ 00 and,
once more treating the case of compact support with

I(r)y ~ A(ry—7)® as r->ry,
we have for t <€ 1

u ~ I(r), r <7,
u ~ D G(w), 1 =ry+O0@E /D),
u ~ tF(r), r> 1,

where w = (r—r,) 7V and ¢(w) is given by (2.7) with N = 2 and where F(r) is given
by (5.7).
It can be shown that the condition

u= 2t 1+2ln7ﬁ0+0L as  r—>00
T2 In?r In 7 In 7

then holds for all ¢ so, defining x, by

x, = Inr,,
we have
¢~ (2t/x®) (14 2x,/x) as x->+ 0. (5.20)
To determine the behaviour close to the extinction time ¢, = $M we write
t=t,+T
with 7' < 0. Expressions (5.13) and (5.19) then give
c~M/x* as x—>+o0, T->07, (5.21)
with J cdx =—2T. (5.22)

If we seek a self-similar form consistent with these two conditions then we need
c~ (=T)gn) as T->07, (5.23)
where 5 = #(—T'), and the leading-order balance in (5.10) is simply
—2¢,—7dg,/dy = 0,

so it follows from (5.21) that
go =M/%". (5.24)

This expression is evidently not valid for all # and an inner region is again needed;
the result (5.23) is valid for

x=0(1/(=T)) as T->0" with a(=T)> 7,
Phil. Trans. R. Soc. Lond. A (1993)
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where 7, is given from (5.22) by

fo Jo(n)dy =2

o
so that Ny =M.
We again need a correction term; writing

e~ (=T)go(n)+(=T)g:(n) as T->0"

d d d
yields -3¢, —nd—g; =3 (go‘l a%)
so that g1 = (=2+4,/n)/7*
where it follows from (5.20) that
A, =2Mx,.

Using (5.25), the inner region has scaling

x=M/2(—T)+=

with ¢~ (—T)hy(z)+(—T)hy(z) as T—-0"
dh, d dh
=0 10
so that &4 hy dz)’
dh, d*
and _2h0_%Md_zl = aé‘é‘(holhl).

Matching with (5.26) implies that
hy ~ 4/M as z»+oo,\
hy ~—8(2z+1—2x))/M*> as z->+o00. J
In 2(—7T) < M we find using (5.11) that
Inc—2x+ U, +1T)

is exponentially small in —7 as 7'— 0~ and we therefore also require that

Inhy,Inh, ~22 as z->—00.

Equation (5.28) thus gives
ho = 4/M(1 4720

(5.25)

(5.26)

(5.27)

(5.28)

(5.29)

(5.30)

(5.31)

where the constant z, remains to be determined, and from (5.29) we then obtain

4 d

— 7 (2(e—7) +In (14+e72) — WM by = - (h5"hy)

M
from which it follows that
hy ~—8(22—1—2z))/M* as z->+ 0,

so we deduce from (5.30) that
2y = xy—1.
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Self-similar behaviour for fast nonlinear diffusion 367

Returning to the original variables we finally obtain

u~4(t,—t)?2/Mr*+riexp M/(t,—t)—2)) as t—>i; } (5.32)
for r = O(exp (M/2(t,—1)))
from (5.31), which may be written in the self-similar form
M M
~/ — 2 — e ———
et (n—t))f (’”/ oxp (2<tc—t>>>’ (5:33)
while

u~M/r*In?r as t—>t; for (f,—¢)Ilnr>1M, (5.34)

which follows from (5.24).

Although the asymptotic behaviour given by (5.33) has similarities with (5.2),
there are a number of crucial differences; among these is that the solution (5.33)
extinguishes in finite time whereas (5.2) does not.

6. Discussion

This paper has concentrated on the radially symmetric equation (1.2). There is also
interest (see, for example, Kamin & Rosenau 1981) in inhomogeneous nonlinear

diffusion equations such as
%’;—L = xl%(x’“D(u) %)’ (6.1)
and our results are also applicable to equations of this form; writing
r =gl ®DR /(| L+ 1))
transforms (6.1) to a radially symmetric equation with dimension
N=2(1-0)/2—(k+1)).

Applications such as these motivate the consideration of (1.2) with N # 1,2,3. The
results given earlier are applicable to the case N> 2. In the range 0 < N < 2 the
results given in the Appendix indicate that finite mass solutions exist only for n» <
2/N. When this condition is satisfied the large-time behaviour for solutions to (1.9)
and (1.10) which conserve mass is again given by (1.6) and (1.7), but for 1 <n < 2/N
we do not have uniqueness because other solutions exist which do not conserve mass.

To obtain a physically based criterion for selecting among the possible solutions to
(1.9) and (1.10) in the ranges for which non-uniqueness occurs, i.e. (assuming N > 0)
for N<2, 1<n<2/N and N=2, n =1, we consider the following regularized
initial-boundary value problem

a_u 1 Q(yN_l u_”a_u>’
or

a PN or
at r=0, VNl "ou/or=0, (6.2)
as r—--+o0, uU—>e,
at t=0, u=1I(r)+e,

in the limit e—0*. The same approach was adopted in King (19925, ¢) for the cases
N=1withn>2,N=2withn >1and N > 2 with n > 1 for which there are no finite
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368 J. R. King

mass solutions. Thus in King (1992, ¢) the inclusion of ¢ > 0 ensures that a solution
exists; here it plays the different role of selecting one of the multiplicity of solutions
which exist for e =0. A physical motivation for (6.2) is that in applications the
diffusivity will not in practice become unbounded as the concentration goes to zero;
defining u* = u—e¢ we have

D(u#) = (u*+e)™

which is representative of the required behaviour. An alternative regularization of a
similar type is provided by the model (1.2) and (1.3).
In the limit €0 with £ = O(1) we have leading-order problem

Oug 1 0f vy, 0uy
o Nt 67’(7 Yo )

at r=0, Nl "ou,/or =0, (6.3)
as r—>+00, wu,—>0,

a/t t =0, u0=I(7‘),

so that (1.9) and (1.10) are reproduced. We now consider the various possibilities.
(@) 0<N<2, 1<n<2/N
(1) Uy ~ (mr?/2(2—nN)t)™V* as r—oo, (6.4)
(see (A 1)). The outer region is then given by

r=e¢"R, u=ew,

so that
dwy, 1 0 . 0w,
ot RYoR (R Y 3R )
as R-0", Wy—>~+ 00, (6.5)
as R-—>+ o0, wy—>1,

as t=0,R>0, w,=1.

The solution to (6.5) is uniquely specified ; evidence for this may be deduced by’
reformulating the problem by using the non-local transformation

v= —J RN, —1)dR+LR", = RV,

R N
It is easily shown that, for n # 1, y(v, ) satisfies
% _ (2(;1_\7 )12)””%<y2(N_1)(n_1)/<2_N) (2_35)”_1> (6.6)
as v—>—00, y-—0,
as v—>+00, y~ (Nv)&VN (6.7)
at t=0, y = (Vo) @V H(v);

for n = 1 equation (6.6) is replaced by

a_y — — E 2(N—-1)/(2—N) a_y
ot~ @ N)av<ln<y w))

Phil. Trans. R. Soc. Lond. A (1993)
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Self-similar behaviour for fast nonlinear diffusion 369
The conditions (6.7) follow since
as  y->0%, v-—>—00,
at t=0,9y>0, v=yVeENM/N

The equation (6.6) belongs to class discussed in, for example, Atkinson & Bouillet
(1979); we note that dy/dv > 0 holds for the required solution.

Unlike (6.5), the formulation (6.6) and (6.7) does not contain a singular boundary
condition and, although the conditions (6.7) are not of the form for which equations
of the class (6.6) are usually discussed, we believe that (6.6) and (6.7) has a unique
solution which takes the self-similar form

y = 1E-N2Q(y/¢NI2),
It follows that w, takes the form
wy = wy(R/1),
and the solution to (6.5) satisfies
wy ~ (nR?/2(2—nN)t)"V" as r—>0"

and therefore matches with (6.4).

We note that, while the issue of non-uniqueness then arises only for 0 < N < 2 with
1 <n < 2/N, the preceding analysis is in fact applicable to the whole of the range
N> 0 with 0 <n <2/N.

(i) (1) n#E 1, uy~A@)rN DD a5 rso0, (6.8)
(see (A 2)). This asymptotic form for u, implies the outer scalings
r =" VWN=DR" o =cw (6.9)

giving the leading-order problem
d N-1 —nawO —
@(R wy oR = 0,
as R->0% wy ~ A(t) RN-D/(n=1)

as R—->+o0, w,—>1.

(6.10)

However, the problem (6.10) has no solution and this indicates that the outer
problem (6.3) is to be solved subject to (6.4) rather than (6.8), thereby specifying w,
uniquely. The solution to (6.2) which is selected in the limit ¢ 0" is therefore that
which satisfies (A 1), which in fact gives the maximal solution. We note, however,
that non-maximal solutions can be selected in applications involving different
boundary conditions; an example is given in King (1992e).

ity (IT) n=1, wu,~ A(t)exp (—=bt)r* ) as r->o0
(see (A 4)). The outer scalings would then be
r=(In (/)M R, w=exp (—In (1/e)@),

2 ()=

with

OR OR
as R—>0%, ¢, ~b(t)R*™,
as R—oo, ¢,—1,
Phil. Trans. R. Soc. Lond. A (1993)
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370 J. R. King

which has no solution, implying that the maximal solution is also selected in the case
n=1.
)y N=2,n=1
(1) Uy~ 2t/r*In*r as r—oo (6.11)

(see (A 6)). In this case there are two further regions in the asymptotic structure. In
the outer region we write
r=¢tR, u=ew

and recover (6.5) with N = 2, n = 1. The solution takes the form
wy = wy(R/ )
and satisfies wy ~ 2t/R?*1In? (1/R) as R->0% (6.12)

In this case the similarity ordinary differential equation for w, can be integrated
exactly; if we write

wy =t exp (9(£))/R?,
where ¢ = In (R/#), then ¢ satisfies

oof1_1d9) _d%
2d¢) ~ de’

as {—>—o00,9~—2In (=Y,
as {—>4o00,9=2¢+0(1),
dg _1dg _ 1.
so that d§+21n (1 2d—§)_ 1ef. (6.13)

Because of the logarithmic terms, expressions (6.11) and (6.12) do not match
directly and a transition region is needed. The relevant variables here are

X=Inr/In(1/e), C=1n®(1/e)r*u
and at leading order
o 2 (i)
ot X\ " ox)
as X—->0%, O, ~ 2t/X? (6.14)
as X—>1, C,~2t/3—X)%
at ¢t =0, C,=0,

where we have matched with (6.11) and (6.12). The solution to (6.14) may be
obtained exactly in the separable form

C, = 8n?/sin? (2nX). (6.15)

We note that these results hold only for ¢ < 1M and that if this condition is met
then
f ru, dr = M —2t, J R(w,—1)dR = 2¢,
0 0

showing how mass is transferred from » = O(1) to R = O(1). It is also worth noting
Phil. Trans. R. Soc. Lond. A (1993)
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Self-similar behaviour for fast nonlinear diffusion 371

that the asymptotic results just given cannot be matched directly into the late-stage
behaviour for which the appropriate scalings are

t=1IM+0(1), r=0(?), u=0().

The intermediate asymptotic timescale describing the transition between the
timescales ¢ < M and ¢ > M has scaling

t =1M+{/In (1/e)

and it can be shown that for f = O(1) the leading-order behaviour in the limit ¢ >0
takes the very unusual self-similar form

u ~ (P +m2M?) exp (—2q(f;€) In (1/€)) f(r/exp (q(f;€) In (1/€)))/In? (1/€)

with i
q = arctan (nM/(—t))+o(1) as e—0

and fn) =4/(M(1+9?
(ii) Uy~ A@)r°® as r—oo,
with b(t) > 2 (see (A 7)). The outer scalings would now be
r=¢ YR, u=ew
6%(]% wy %%) 0,
as R—0", wy ~ A(t) R0,

as R—->+o0, w,—1,

so at leading order

which has no solution. Hence the maximal solution, in this case satisfying (A 6), is
also selected in the case N =2,n = i.

() N>2,2/N<n<1

Tt is instructive to consider this case also even though there is no issue of selection,
the solution to (6.2) with ¢ = 0 being uniquely specified. The results (6.8)—(6.10) are
valid but the crucial difference is that in this range (6.10) does possess a solution,

namel
y _ (1 +(A(t))(1—n) R—(N—z))l/(l—n).

In this case there is also a third region with
R = p/e™N-DIN=0 4y = | 4 ¢nN-D/2 b

and at leading order

0Py _ 1 0/ y 0P
&  pVlop P )
as‘ P_>O+’ 45 NL(A(t))(l—n)p—(N—z)’

1—

as p—>+00,P,—>0,

at t=0, @,=0; ‘
the mass being lost from r = O(1) for t < ¢, appears in p = O(1).
Phil. Trans. R. Soc. Lond. A (1993)
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372 J. R. King

The following comments are intended to summarize the various cases of (1.9) and
(1.10) for N > 0 with compactly supported initial data of finite mass (1.11).

1. n < min (1,2/N). The solution is unique and its large-time behaviour takes the
form (1.6).

2. 2/N>mn>1, N<2. The solution is not uniquely specified. The large-time
behaviour of the maximal solution, which preserves mass, take the form (1.6).

3. 1>n>2/N,N > 2. The solution is unique and extinguishes in finite time. The
behaviour close to extinction can be determined from (4.1)—(4.3).

4. n=2/N, N > 2. The solution is unique and the large-time behaviour is given by
(2.32) and (2.34).

5. n =1, N = 2. The solution is not uniquely specified and extinguishes in finite
time. The maximal solution does not preserve mass and its behaviour close to
extinction is given by (5.32) and (5.34).

6. » > max (1,2/N), N# 2 and n > 1, N = 2. There are no finite mass solutions.

In cases (1)—(3) the asymptotic behaviour is given by a group-invariant solution
to (1.9). Such results can therefore be used in conjunction with comparison theorems
to obtain bounds on more general solutions. In cases (4) and (5) the similarity form
describing the asymptotic behaviour does not exactly satisfy (1.9) and cannot
therefore be directly used in this manner.

The very special status of case (5) may be indicated by noting that the other five
ranges listed above intersect at the point n = 1, N = 2. Case (5) is also notable from
the point of view of its symmetry group, it being invariant under an infinite
dimension group which corresponds to conformal mappings (Nariboli 1979; King
1992a). In addition, it is possible to construct numerous exact non-group-invariant
solutions to (1.1) in this special case (King 1992d).

We have concentrated in this paper on the radially symmetric equation (1.9). We
expect that the large-time behaviour, or the behaviour close to extinction, of
solutions to (1.1) will in general be radially symmetric, so that such results are more
generally applicable. We also expect that the far-field behaviour of solutions to (1.1)
(for compactly supported initial conditions at least) will be radially symmetric, so
that our conclusions concerning the flux of material to infinity remain valid. In, for
example, the finite-time extinction case discussed in §4 additional issues nevertheless
arise in considering (1.1), such as the determination of the location of extinction in
the case n > 4/(N+2) in which the asymptotic profile contracts down onto a single
point.

We conclude by briefly noting some of the consequences of our results for the
model (1.2) and (1.3) in which m is an integer with m > 2. The high concentration
behaviour of this model is governed by (1.1) and (1.4). In one and two dimensions the
intermediate asymptotic behaviour (which describes the transition from high to
intermediate peak concentrations) is given by (1.6) and (1.7) and applies for ¢ large
(but not too large). The decay of the peak concentration is therefore gradual and its
time dependence can be characterized by (1.6). In three dimensions a much greater
range of behaviour is possible. For m = 2 the intermediate asymptotic behaviour is
again given by (1.6) and (1.7). For m > 4, however, the high concentration region
will disappear abruptly at some finite time ¢ = ¢,, the time dependence in this case
being characterized by (4.1)-(4.4). For m = 4 we have # < 0 so that the region in
which u/uy,, = O(1) continues to spread out as ¢ approaches ¢,. For m = 5 we have
B =0, while for m > 5 we have § > 0 implying that the high concentration region
contracts down to a single point as it approaches extinction. Finally, for m = 3 the
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Self-similar behaviour for fast nonlinear diffusion 373

large t behaviour of the high concentration region takes the form (2.33) with N = 3,
indicating a very rapid decay rate in the intermediate asymptotic régime.

Appendix. Far-field behaviour

This appendix is concerned with possible behaviours as » -0 of solutions to (1.9)
with n > 0, N > 0 for which the finite mass condition

o0
J- N lydr <o
0 ¥
is satisfied. There are two main possibilities, namely separable behaviour and quasi-

steady behaviour. The nature of the solutions may be classified according to whether
the flux to infinity,

J(t) = —lim (rN‘l u™" 2—?) ,

r—>00

is zero (so that mass is conserved) or positive (so that mass is lost). Finite mass
solutions are possible only for n < max (1,2/N) for N # 2 and for n < 1 for N = 2 and
we may distinguish the following cases.

(@) » <min(1,2/N)
Here we have a separable balance
u~ (mr?/2(2—nN)t)"" as r—o0, (A1)
so that J(¢) = 0 and mass is conserved.

() N<2,1<n<2/N

There are now two possibilities. Expression (A 1) can again be valid and such
behaviour gives maximal (mass-preserving) solutions. A quasi-steady balance

u~A@)r&-P/mD  ay r>o00 (A 2)
is also possible with
N—-2
J(t) = E—) A(t). (A 3)

In this range the solution is not uniquely specified unless J(¢) is prescribed; (A 1)
corresponds to the case J(t) = 0.

() N<2,n=1
Expressions (A 1) and the quasi-steady balance
u~A(t) exp (—b(t)r*N) as r—o0, (A 4)
with J(t) = —(N—2)b(¢),

are both possible. As with case (b), the flux J(t) must be prescribed if the problem is
to be completely specified.
(d N>2,2/N<n<1

Expression (A 2) describes the behaviour in this case since (A 1) is not admissible.
The flux J(t) is positive and is determined as part of the solution.
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() N>2, n=2/N

As in case (a), we are restricted to a separable balance; here we have

u~(@*Inr/N—2)t)V?* as r->o0, (A 5)
for which J(t) = 0.
(fy N=2,n=1
As noted earlier, the possibilities here are separable with
w~ (r*In®r/2t)71 as r->o0, (A 6)
for which J(¢) = 2, and quasi-steady with
u~Al)r°® as r->o0, (A7)

with b(¢) > 2 and J(t) = b(t). The flux J(f) must be specified for the solution to be
uniquely determined; here we need J(t) = 2 whereas in cases (b) and (¢) we require
J(t) = 0.

The cases listed above do not exhaust the possibilities. For example, if

I(ry~Ar® as r->o0, (A 8)
with b < 2/n then at leading order we have steady state behaviour with
u(r,t) ~ Ar° as r->00.

However, the possibilities listed above are those appropriate when (for example) /()
has compact support.

In the remaining range, namely n = max(1,2/N) for N # 2 and » > 1 for N = 2,
consistent far-field balances include

u ~ (nr?/(nA" —2(nN—2)t))"V" as r->o00 (A9)
and u~Ar? as r—-oo for b<2/n,

both of which arise from initial conditions satisfying (A 8) with b < 2/n (when n >
2/N, the form (A 9) implies finite time extinction). All such possibilities require
infinite mass initial conditions and we infer that, as already noted, no finite mass
solutions exist in this range.
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